Journal of Thermal Analysis and Calorimetry, Vol. 61 (2000) 289–303

THERMODYNAMIC INVESTIGATIONS IN THE BI-O SYSTEM*

G. Moiseev¹, N. Vatolin¹ and N. Belousova²

¹Institute of Metallurgy, Ural Division of the Russian Academy of Sciences, 101, Amundsen Str. 620016, Ekaterinburg

²Krasnoyarsk State Academy of Nonferrous Metals and Gold, 95, Krasnoyarsk Workers Str. 660025, Krasnoyarsk, Russia

Abstract

With the use of various calculation methods, unknown thermodynamic properties (TP) of Bi_2O_5 and BiO_2 , as well as the temperature dependencies of reduced Gibbs energy (TDRGE) were determined. With the help of thermodynamic simulation (TS) methods at 300–1500 K, common $P=10^5$ Pa the thermal decompositions of condensed Bi_2O_5 , BiO_2 , Bi_2O_3 and BiO have been investigated in initial atmosphere of O_2 and Ar. Every condensed substance was presented as the individual phase.

It was found that Bi_xO_y oxides have temperature stability fields and also districts of possible mixture formation. During equilibrium heating of Bi_xO_y oxides the various types of phase transformations were observed. The characteristics of some transformations were estimated.

Keywords: decomposition, mixture, oxide, phase transformation, standard enthalpy of formation, thermodynamic simulation

Introduction

According to [1-4] in the Bi–O system condensed oxides BiO, Bi₂O₃, BiO₂ and Bi₂O₅ can exist. The thermodynamic properties (TP) and temperature dependencies of the reduced Gibbs energy (TDRGE) for BiO and Bi₂O₃ are known, and introduced into the databases IVTANTERMO and ASTRA.BAS [5]. For others oxides the known TP are presented in Table 1. It is clear, that those TP are not enough for calculation of the TDRGE of Bi₂O₅ and BiO₂.

The lack of and TDRGE for the above mentioned oxides does not permit reliable thermodynamic investigations into the systems containing bismuth and oxygen (high temperature superconductors, phases with 'fast ionic transport' [6, 7] and so on). As a rule, in published works (for example [6–10]) only the properties of condensed Bi_2O_3 are taken into account. According to above mentioned references, this oxide is the most stable in the Bi–O system. The data about temperature dependencies of partial pressures of gaseous components over Bi_2O_3 are known and summarized in [11]. But

^{*} Dedicated to Prof. Šesták in recognition of his outstanding activity in thermal analysis

$C_{\rm p}$ at J K ⁻¹	T>7 mol
	2.22
7	5.60

 q_7

0

0

0

0

 c^{*}

45.979

3.700

 q_6

0

0

0

0

 b^*

15.978

13.432

 q_5

19.085

0

0

16.00

 $T > T_{tr}$

mol⁻¹

	Table 1 Thermochemical	properties and thermodynamic functions (TDRGE) for Bi ₂ O ₃ and BiO ₂
--	------------------------	--	--

 $H_{298}^{o} - H_{0}^{o} / J \text{ mol}^{-1}$

23230

11784

 q_2

38.5001

33.986

16.5001

18.0601

 $T_{\text{decomposition}}/$

423[3]

573[3] 538[2]

578[1]

 q_3

-0.00549424

0

-0.0004427

0

 a^*

161.16

69.07

Coefficients q_i in equation $\Phi^*(T) = q_1 + q_2 \lg x + q_3 x^{-2} + q_4 x^{-1} + q_5 x + q_6 x^2 + q_7 x^3$

 q_4

0.977894

0.493134

0.254093

0.275511

62.6359 ^{*}*a*, *b*, *c* are coefficients of equation: $C_{\rm p} = a + b \cdot 10^{-3} T - c \cdot 10^{5} T^{-2} / \text{J K}^{-1} \text{ mol}^{-1} \Phi^{*}(T)$ in cal K⁻¹ mol⁻¹ for Bi₂O₅ and BiO₂ (*x*=10⁻⁴ · *T*/K)

 S_{298}^{0} / J K⁻¹ mol⁻¹

139.3±10.8

74.3±7.7

 q_1

121.548

116.468

57.7669

 $\Delta H_{298}^{
m o}$,/kJ mol⁻¹

-185[13] -728.1

-335.2

T/K

298-423

423-6000

298-573

573-6000

Oxide

Bi₂O₅

 BiO_2

Bi₂O₅

BiO₂

we did not find in the available literature the full data about the thermal and thermodynamic stability of condensed Bi₂O₃. For others oxides those characteristics evidently are unknown too.

Therefore the goals of this work were:

- the determination of the unknown TP and TDRGE for condensed Bi₂O₅ and BiO₂; introduction of those data into the database ASTRA.OWN [12] for application in computer modeling;
- · a study of temperature and composition dependencies of condensed BiO, Bi_2O_3 , BiO_2 and Bi_2O_5 thermal decomposition.

Methods and procedures

Different calculation methods and procedures (for example [12]) were used for determination of the unknown TP of Bi₂O₅ and BiO₂. The essence of the main methods are given below, together with the calculation results.

Thermal decomposition of condensed Bi_vO_v was studied with the use of thermodynamic simulation (TS) methodology, which was described in detail in [5, 14, 15]. In the system ' $Bi_x O_y + O_2(Ar)$ ' we take into account the thermodynamic functions of condensed Bi, BiO, Bi₂O₃, gaseous Bi, Bi₂, Bi₃, Bi₄, BiO, Bi₄O₆, O₂, O and Ar [5], condensed Bi₂O₅, and BiO₂ (this work). Every condensed substance was present as an individual phase. The study was carried out from 300 to 1500 K with the steps of 10 to 100 K in initial O₂ or Ar atmosphere, common $P=10^5$ Pa with the application of program ASTRA.4 [5].

Determination of the TP and TDRGE for Bi₂O₅ and BiO₂

 Bi_2O_5

The S_{298}^{0} values were calculated:

- from the empirical relation [16]:

$$\log S_{298}^{0} \approx 0.875 + 0.725 \log n$$
 (1)

where S_{298}^{0} is in [cal mol⁻¹ K⁻¹]; *n* is the number of atoms in the molecule; - from the equation [17]

$$S_{298}^{0} \approx A \log M + B \tag{2}$$

where M is molecular mass of compound, A and B are empirical constants in the row of similar compounds (values of S_{298}^0 for As₂O₅ and Sb₂O₅ were taken from [18]). The average value of S_{298}^0 equal to 139.4±10.8 J mol⁻¹ K⁻¹ we have taken as reliable. The value of increment $H_{300}^0 - H_0^0$ was calculated with the use of equation [19]

The value of increment
$$H_{298} - H_0$$
 was calculated with the use of equation [19]

$$H_{298}^{0} - H_{0}^{0} \approx 204 \overline{S}_{298}^{0} \exp{-\frac{S_{298}^{0}}{23.5}}, \text{ cal g-atom}^{-1}$$
 (3)

where, $\overline{S}_{298}^{0} = S_{298}^{0} / n$ and *n* is the number of atoms in the molecule.

For determination of the dependence $C_p(T)$, first we calculated the $C_{p\,298}^0$ value. For it we used:

- the equation [12]:

$$C_{p_{298}}^{0} \approx A \log M + B \tag{4}$$

where M, A and B are the same as in Eq. (2). (Values of $C_{p,298}^0$ for As₂O₅ and Sb₂O₅ were taken from [18, 20]);

- calculation procedures based on the equations:

$$C_{p\,298}^{0}(\text{Bi}_{2}\text{O}_{5}) \approx C_{p\,298}^{0}(\text{Bi}_{2}\text{O}_{3}) + 2C_{p\,298}^{0}(\text{O})$$

$$C_{p\,298}^{0}(\text{Bi}_{2}\text{O}_{5}) \approx 2C_{p\,298}^{0}(\text{BiO}) + 3C_{p\,298}^{0}(\text{O})$$
(5)

where C_{p298}^{0} (Bi₂O₃) and C_{p298}^{0} (BiO) were taken from the database ASTRA.BAS [5] and

$$C_{\rm p}(T)(O) \approx 20.04 + 4.07 \cdot 10^{-3} T - 9.42 \cdot 10^{5} T^{-2}$$
 (6)

in J mol⁻¹ K⁻¹ were taken according to Dr. H. Yokokawa (private communication); - with the use of the empirical equation [16]

$$C_{\rm p}(T) \approx (7n+2) - (1.16n-1) \cdot 10^{-3} T^{-1} + (1.333n-66) \cdot 10^{3} T^{-2}, \tag{7}$$

in cal mol⁻¹ K⁻¹, where *n* is the number of atoms in the molecule. The average value $C_{p\,_{298}}^{0}$ (Bi₂O₅)=114.2±5.6 J mol⁻¹ K⁻¹ was taken as reliable and used for calculation of $C_p(T)$ using the method, described in [21]. In result we found:

$$C_{\rm p} ({\rm Bi}_2 {\rm O}_3) \approx 161.161 + 1597810^{-3} T - 4597910^5 T^{-2}, \, {\rm J} \, {\rm mol}^{-1} \, {\rm K}^{-1}$$
 (8)

According to [3], the Bi₂O₅ decomposition finished at 423 K; the change of enthalpy at this temperature was taken as equal to 0.

BiO_2

For the estimation of S_{298}^{0} values we used: – the Latimere method [12]; – Eq. (1); - comparison of S_{298}^{0} (MO₂) (M = Hf, Sb, Pb, W) on row, period and diagonal of the Periodic System (a variant of the Birkengaime method [12]); - the additive method:

$$S_{298}^{0} (\text{BiO}_{2}) \approx S_{298}^{0} (\text{Bi}_{2}\text{O}_{3}) - S_{298}^{0} (\text{BiO}),$$

$$S_{298}^{0} (\text{BiO}_{2}) \approx S_{298}^{0} (\text{Bi}_{2}\text{O}_{5}) + S_{298}^{0} (\text{Bi}_{2}\text{O}_{3}))/4$$
(9)

The values of S_{298}^{0} for Bi₂O₃ and BiO were taken from the database ASTRA.BAS [5], S_{298}^{0} (Bi₂O₅) was taken from this work, and the average=74.3±7.7 J mol⁻¹ K⁻¹ was taken as reliable.

The value of $H_{298}^0 - H_0^0$ was calculated with the use of Eq. (3). The values of C_{p298}^0 and the function $C_p(T)$ have been determined with the help of procedures described above for Bi₂O₅, and are equal to:

$$C_{p_{298}}^{0}$$
 (BiO₂) $\approx 689 \pm 4.1$ and
 C_{p} (BiO₂) $\approx 69.07 + 13.43210^{-3} \cdot T - 3.710^{5} \cdot T^{-2}$, Jmol⁻¹K⁻¹ (10)

The decomposition temperature of BiO₂ is 573 K according to [3]; the change of enthalpy at this temperature was taken as equal to 0.

For the determination of standard enthalpies of formation (ΔH_{298}^0 , SEF) of Bi₂O₅ and BiO₂, various methods and estimations have been used.

First, we used the approximate ratios

$$\frac{T_{\text{ph.tr}}(\text{Sb}_2\text{O}_5)}{T_{\text{ph.tr}}(\text{Bi}_2\text{O}_5)} \approx \frac{\text{SEF}(\text{Sb}_2\text{O}_5)}{\text{SEF}(\text{Bi}_2\text{O}_5)}, \frac{T_{\text{ph.tr}}(\text{SbO}_2)}{T_{\text{ph.tr}}(\text{BiO}_2)} \approx \frac{\text{SEF}(\text{SbO}_2)}{\text{SEF}(\text{BiO}_2)},$$
(11)

using known data for Sb₂O₅ and SbO₂ taken from [4, 18, 20], and the estimated SEF values of Bi_2O_5 and BiO_2 were equal to -566.4 and -13.4 kJ mol⁻¹, respectively.

Then we used the universal linear approximation rules (ULAR) [22] (Fig. 1), and determined SEF values of Bi₂O₅ and BiO₂ equal to -615.3 and -307.2 kJ mol⁻¹, respectively. These values were calculated from linear regression equations, constructed with the use of known SEF for Bi₂O₃ and BiO [5]: left side:

$$H_{\rm at}^{0}(j) \approx -307.5 X({\rm Bi}), \text{ kJ g-atom}^{-1}$$
 (12)

right side:

$$H_{\rm at}^{0}(j) \approx 205(X({\rm Bi})-1), \text{ kJ g-atom}^{-1}$$
 (13)

In the last stage, we used the agreement procedure (AP) [23] on the supposition that only the SEF values for BiO and Bi₂O₃ are correct [5].

The SEF values for Bi₂O₅ and BiO₂ oxides were determined to be equal -728.1 and -335.2 kJ mol⁻¹, respectively.

The agreement procedure [23] allows correction of known, and determination of unknown, SEF values of related inorganic substances by use of the following function:

$$\Psi(j) = \frac{H_{at}^0(j)}{\varphi_j}, \text{ kJ g-atom}^{-1} \text{ sort}^{-1}$$
(14)

where we named $\Psi(j)$ as the 'sort standard enthalpy of formation' (SSEF), for the *j*-th relative compound (in our case Bi_xO_y);

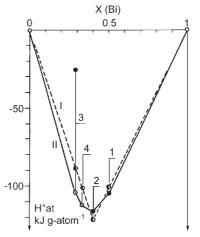
$$H_{\rm at}^{0}(j) = \frac{\Delta H_{298}^{0}(j)}{n_{\rm i}}, \text{ kJ g-atom}^{-1}$$
(15)

where n_i is the number of atoms in a molecule of the compounds;

$$\varphi_{j} = \left(\frac{x}{y}\right)_{j} \tag{16}$$

where we named φ_j as the 'sort' of the *j*-th related compound (in our case for Bi₂O₅ $\varphi=2/5=0.4$; for BiO₂ $\varphi=1/2=0.5$, and so on).

It was found that, for related compounds in definite systems, if the values of SEF were determined correctly, then in the coordinates ' $lg\Psi_j - \phi_j$ ' we must observe linear dependencies


$$\lg \Psi_{i} \approx A + b\varphi_{i} \tag{17}$$

In our case

$$\lg \Psi_{i} = 2.6784 - 0.6584 \varphi_{i}, \text{ kJ g-atom}^{-1} \text{ sort}^{-1}$$
 (18)

and calculations of SEF for Bi_2O_5 and BiO_2 were made with the use of Eq. (18). Note, that application of the ULAR to analysis of reference data gave an average divergence between calculated and reference data of not more than $\pm 7.5\%$ [22]; whereas for application of the AP, divergence was not more than $\pm 2.5\%$ [23].

The results of the various calculations and estimations of SEF values for Bi_xO_y oxides are presented in Table 2. It is seen from Table 2 and Fig. 1, that if we take the SEF for Bi_2O_3 and BiO [5] as reliable, then the value of the SEF for Bi_2O_5 estimated in this work [13] is not correct. We thus take as reliable the SEF for Bi_2O_5 and BiO_2 calculated with the use of the AP.

Fig. 1 The results of the use of universal linear approximation rules – ULAR [22] (curve 1) and AP [23] (curve 2) for the determination of H_{at}^0 for Bi₂O₅ and BiO₂; $1-4-H_{at}^0$ for BiO, Bi₂O₃, Bi₂O₅ and BiO₂; $\bullet - 1$ and $2-H_{at}^0$ for BiO and Bi₂O₃ according to [5]; $\bullet - 3$ – for Bi₂O₅ according to [13]; $o - H_{at}^0$ for Bi_xO_y according to the ULAR; $o - H_{at}^0$ for Bi_xO_y according to the AP

J. Therm. Anal. Cal., 61, 2000

	A 770 /1 T 1-1	1		$\Delta H_{\rm a}^0$	/kJ g-atom ⁻¹			A 770 /1 T 1	-1
Oxide $\frac{\Delta H_{298}^0/\text{kJ mol}^{-1}}{\text{known data}}$		known da	ta	stimation 1 Eq. (11)	on ULAR, Eqs (12), (13)	on A Eq. (1		ΔH_{298}^0 /kJ mol taken as relia	
BiO	-209.4^{*}	-104.7^{*}		_	-102.5	-104	.7	-209.4	
Bi ₂ O ₃	-578.3^{*}	-115.7^{*}		_	-123.0	-115	.7	-578.3	
Bi ₂ O ₅	-185^{**}	-26.43*	*	-80.9	-87.9	-104	.7	-728.1	
BiO ₂	_	_		-71.1	-102.4	-111	.7	-335.2	
Fable 3 Mo	le fraction of Bi ₂ (0							
			– in mixtures	s of BiO ₂ +Bi ₂	O ₃ (initial system I	BiO ₂ +Ar)			
<i>T/K</i>	400		– in mixtures 600	s of BiO ₂ +Bi ₂ 700	O ₃ (initial system I 800	BiO ₂ +Ar) 820	840	860	880
		A 500					840 2.60·10 ⁻¹	860 $6.74{\cdot}10^{-1}$	880 1.0
T/K	400	A 500 6.536·10 ⁻⁸	600 8.143·10 ⁻⁵	700 1.247·10 ⁻²	800	$820 \\ 1.196 \cdot 10^{-1}$			
T/K	400	A 500 6.536·10 ⁻⁸	600 8.143·10 ⁻⁵	700 1.247·10 ⁻²	800 5.806·10 ⁻²	820 1.196·10 ⁻¹			
T/K X(Bi ₂ O ₃)	400 1.284·10 ⁻¹²		600 8.143·10 ⁻⁵ nixtures of E	700 1.247·10 ⁻² Bi+Bi ₂ O ₃ (initi	$\frac{800}{5.806 \cdot 10^{-2}}$ al system BiO+Ar,	820 1.196·10 ⁻¹ 300 –1220 K)	$2.60 \cdot 10^{-1}$	$6.74 \cdot 10^{-1}$	
<i>T/</i> K <i>X</i> (Bi ₂ O ₃) <i>T/</i> K	400 1.284·10 ⁻¹² 600		600 8.143 · 10 ⁻⁵ nixtures of E 800 7.58 · 10 ⁻¹⁰	$700 \\ 1.247 \cdot 10^{-2} \\ 3i + Bi_2O_3 (initi) \\ 900 \\ 6.198 \cdot 10^{-8} \\$	800 5.806·10 ⁻² al system BiO+Ar, 1000	820 1.196·10 ⁻¹ 300 –1220 K) 1100 7.64·10 ⁻⁵	2.60·10 ⁻¹ 1200	6.74·10 ⁻¹ 1220	

0.5080

0.5105

0.5140

0.5287

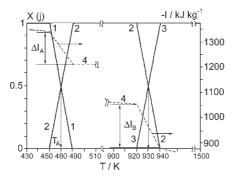
0.5970

Table 2 Known data and results of the estimation and calculation of SEF for bismuth oxides

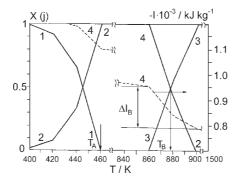
 $X(Bi_2O_3)$

0.5035

0.5047


0.5060

MOISEEV et al.: Bi-O SYSTEM


All the properties for Bi_2O_5 and BiO_2 that are taken as reliable are presented in Table 1. They were used for the determination of the TDRGE values for those oxides with the help of the subprogram TERMOS [5]. The numerical coefficients of the approximating polynomials of the TDRGE are given in the second part of Table 1.

The thermal decompositions of BiO, Bi₂O₃, BiO₂ and Bi₂O₅

Some results of investigations are presented in Figs 2 to 5 and in Tables 3 to 5.

Fig. 2 The systems $\text{Bi}_x\text{O}_y+\text{O}_2$; Changes of compositions and energetic characteristics in the interval 450–1500 K; $1-3 - X(\text{Bi}_2\text{O}_5)$, $X(\text{Bi}\text{O}_2)$ and $X(\text{Bi}_2\text{O}_3)$; 4 – changes of systems enthalpies (I=f(T)); T_A and T_B , ΔI_A and ΔI_B are the temperatures of the transformations in Eqs (19) and (20), and the changes of system enthalpies near T_A and T_B , respectively

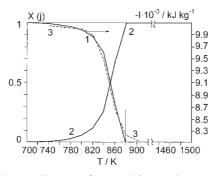


Fig. 3 The system Bi₂O₅+Ar; Changes of compositions and energetic characteristics in the interval 400–1500 K; $1-3 - X(Bi_2O_5)$, $X(BiO_2)$ and $X(Bi_2O_3)$; 4 - I = f(T); $T_A \cong 460$ K is the temperature at the end of phase BiO₂ formation; $T_B \cong 880$ K – the same for the Bi₂O₃ phase

The equilibrium heating of $Bi_x O_v$ in O_2 (Fig. 2, Table 4)

In surplus oxygen (the initial content of O_2 in every system was equal to 14 mass%) oxides BiO, Bi₂O₃ and BiO₂ are transformed into Bi₂O₅ by 300 K. This phase existed

J. Therm. Anal. Cal., 61, 2000

Fig. 4 The system BiO₂+Ar; Changes of compositions and energetic characteristics in the interval 700–1500 K; 1 and $2 - X(BiO_2)$ and $X(Bi_2O_3)$; 3 - I = f(T); $T_A \cong 880$ K is the temperature at the end of phase Bi₂O₃ formation

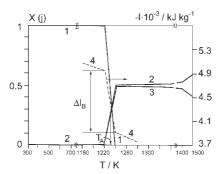


Fig. 5 The system BiO+Ar; Changes of compositions and energetic characteristics in the interval 300–1500 K; 1-3 - X(BiO), $X(Bi_2O_3)$ and X(Bi); 4-I = f(T); $T_A \cong 1230$ K and ΔI_A are the temperature of phase transformation and the change of system enthalpy nearly T_A

up to 480 K. Between 480 and 930 K the phase BiO_2 and at T>930 K the phase Bi_2O_3 were observed.

The sequence of phase composition changes of the oxides can be connected with the transformations:

$$Bi_2O_5 \rightarrow 2BiO_2(cd) + 0.5O_2, 480 \text{ K}$$
 (19)

$$2BiO_2 \rightarrow Bi_2O_3(cd) + 0.5O_2, 930 \text{ K}$$
 (20)

The equilibrium heating of Bi_xO_y *in Ar* (*Fig. 3 to 5, Tables 3 and 4*)

Every bismuth oxide under these conditions (initial content of Ar was equal to 14 mass%) has its own type of decomposition.

Bi_2O_5+Ar (Fig. 3, Table 4)

In the interval 300 to 460 K the condensed phases Bi_2O_5 and BiO_2 can coexist. The mole fraction of BiO₂ in the mixture, $-X(BiO_2)$, – with rise of temperature increase to:

T/K	300	400	420	440	460
$X(BiO_2)$	$9.984 \cdot 10^{-7}$	$1.392 \cdot 10^{-2}$	$7.757 \cdot 10^{-2}$	$3.427 \cdot 10^{-1}$	1.0

Between 460 and 880 K the lone condensed phase in system is BiO_2 , and at T>880 K it is Bi_2O_3 . Consequently, in contrast with the $Bi_2O_5+O_2$ system, an initial phase of Bi_2O_5 in Ar can exist only with a mixture of phase BiO_2 ; the temperature range of existence for the individual phase BiO_2 moves to the low temperature side. These differences are natural results of the atmosphere change and are easily explained.

$BiO_2 + Ar$ (Fig. 4, Tables 3A and 4)

The phases BiO_2 and Bi_2O_3 can coexist at 300–880 K, and a rise of temperature is accompanied by an increasing $X(BiO_2)$ in a mixture of phases (Table 3A). At *T*>880 K sesquioxide of bismuth is the lone condensed phase in the system.

BiO+Ar (Fig. 5, Tables 3B,C and 4)

Between 300 and 1230 K, a rise of temperature in a mixture of BiO + Bi_2O_3 resulted in an increase of $X(BiO_2)$ from ~1·10⁻¹⁸ (300 K) to ~3.35·10⁻³ (1230 K) (Table 3B). A possible reason for it is disproportion of part of the 'mother' phase

$$3BiO(cd) \rightarrow Bi_2O_3(cd) + Bi(g)$$
 (21)

Between 1240 and 500 K, the coexisting phases Bi_2O_3 and Bi were observed as a result of the possible transformation:

$$3BiO(cd) \rightarrow Bi_2O_3(cd) + Bi(cd)$$
 (22)

at about 1230 K (Table 3C). A decrease of the metallic bismuth content in the mixture Bi_2O_3+Bi with rise of temperature can be explained by bismuth evaporation.

 Bi_2O_3+Ar

Over all temperature intervals this oxide is practically the lone condensed phase. Only between 300 and 500 K we observed the existence of BiO_2 , (*X*(BiO_2) in the mixture Bi_2O_3 + BiO_2 being equal to ~3.3·10⁻⁶).

In Table 4, the composition and temperature intervals of existence of the phases are summarized, and the *T* and ΔH values of some of the phase transformations are given. The last mentioned characteristics were determined according to the methods described in [14, 15]. Let us remember that in the temperature range of a phase transformation, the full enthalpy of system (ΔI) changes by a leap (ΔI , Fig. 2 to 5). Because we can calculate numerically by computer experiments not only the function I=f(T), but also the molar content of every condensed phase (and gaseous component

		$Bi_xO_y + O_2$		
300–480 K	480 K	480–930 K	930 K	930–1500 K
Bi ₂ O ₅	Bi_2O_5 →2 BiO_2 +0.5 O_2 ΔH ≈66.5 kJ mol ⁻¹ Bi_2O_5 ΔH ≈32.9 kJ mol ⁻¹ BiO_2	BiO ₂	$\begin{array}{l} 2\text{BiO}_2 \rightarrow \text{Bi}_2\text{O}_3 + 0.5\text{O}_2\\ \Delta H \approx 45.9 \text{ kJ mol}^{-1} \text{ BiO}_2\\ \Delta H \approx 91.8 \text{ kJ mol}^{-1} \text{ Bi}_2\text{O}_3 \end{array}$	Bi ₂ O ₃
		$Bi_2O_5 + Ar$		
360–460 K	460–880 K	880 K	880–1500 K	
Mixture Bi ₂ O ₅ +BiO ₂	BiO ₂	$2\text{BiO}_2 \rightarrow \text{Bi}_2\text{O}_3 + 0.5\text{O}_2$ $\Delta H \approx 48 \text{ kJ mol}^{-1} \text{BiO}_2$ $\Delta H \approx 96 \text{ kJ mol}^{-1} \text{Bi}_2\text{O}_3$	Bi ₂ O ₃	_
		$Bi_2O_3 + Ar$		
300–500 K	500–1500 K			
Mixture $Bi_2O_3+BiO_2$ $X(BiO_2)\approx 6\cdot 10^{-7}$	Bi ₂ O ₃	_	_	_
		$BiO_2 + Ar$		
300–880 K	880–1500 K			
Mixture Bi ₂ O ₃ +BiO ₂	Bi ₂ O ₃	_	-	_
		BiO + Ar		
300–1230 K	1230 K			
Mixture BiO+Bi ₂ O ₃	3BiO→Bi ₂ O ₃ +0.5Bi Δ <i>H</i> ≈25.7 kJ mol ⁻¹ BiO Δ <i>H</i> ≈38.4 kJ mol ⁻¹ mixture Bi+Bi ₂ O ₃	-	-	_

 Table 4 Temperature ranges of existence of oxides and characteristics of some phase transformations during equilibrium heating of bismuth oxides

MOISEEV et al.: Bi-O SYSTEM

also) at every temperature, we can determine ΔH for the phase transformation from the equation

$$\Delta H \approx \frac{\Delta I}{m_{\rm T}}, \, \text{kJ mol}^{-1}$$
(23)

where $m_{\rm T}$ is the number of moles of the *j*-th substance below the phase transformation temperature, or the number of moles of phase transformation products at the temperature of its completion.

Discussion

Before interpreting these results, we must note a few important initial conditions and assumptions that we used.

(i). We take as reliable the TP and TDRGE for condensed BiO and Bi_2O_3 from the data base ASTRA.BAS [5]. With the application of the SEF of BiO and Bi_2O_3 , and assuming that in the Bi–O system can exist the thermodynamically stable phases Bi_2O_5 and BiO_2 , we calculated, with the use of AP [23], the most important properties, – SEF, – for those oxides. Consequently, if the SEF for BiO and Bi_2O_3 [5] are not correct, we have used only agreed values of the SEF for Bi_xO_y oxides. An independent analysis with the use of a 'rough' approximation (Eq. (11)) and the ULAR [22] (Fig. 1) gives us the definite assurance, that the SEF values of Bi_xO_y oxides are determined more-or-less correctly. But, for 'full' assurance, it is necessary to measure the SEF for Bi_xO_y oxides in precise experiments, as well as the other thermochemical properties.

(ii). For the study of the Bi_xO_y thermal decomposition, we used the assumption that every condensed compound can be present as an individual phase. This assumption was made for the determination of the principal behaviours of the bismuth oxide and, of course, is only a preliminary and 'ideal' point of view on the objects of this investigation.

The following speculations must be reasonable if we take into account the above mentioned notes.

Under the chosen conditions of computer experiments we can conclude, that, in the Bi–O (Ar) systems between 300 and 1500 K, the individual oxides Bi_2O_5 , BiO_2 , Bi_2O_3 , BiO as well as the mixtures $Bi_2O_5+BiO_2$, $Bi_2O_3+BiO_2$, $BiO+Bi_2O_3$ and $Bi_2O_3+BiO_3$, BiO as well as the mixtures $Bi_2O_5+BiO_2$, $Bi_2O_3+BiO_2$, $BiO+Bi_2O_3$ and $Bi_2O_3+BiO_3$, BiO as well as the mixtures $Bi_2O_5+BiO_2$, $Bi_2O_3+BiO_2$, $BiO+Bi_2O_3$ and $Bi_2O_3+BiO_3+BiO_3$.

In atmospheres with surplus O_2 , all initial oxides would be oxidized at 300 K up to the 'highest' oxide Bi_2O_5 , and with increasing temperature, the degree of bismuth oxidation changes from $+5 \rightarrow +4 \rightarrow +3$.

In an inert gaseous atmosphere, there is also a common tendency of lowering of the average degree of the bismuth oxidation with increasing temperature, but it is accompanied by formation of oxide and oxide–bismuth mixtures over definite temperature intervals.

J. Therm. Anal. Cal., 61, 2000

Under the chosen conditions, the oxide Bi_2O_3 is most stable, but not the oxide BiO, as would be expected if the results of thermal decomposition investigations of many oxides of less-common metals [4, 5, 11, 14, 15] are taken into account. But at the same time, the results of our study agree with well known experimental facts (see for examples [1–4, 9–11], that the oxide Bi_2O_3 is the most stable oxide in the Bi–O system.

The values of the partial pressures of O_2 , Bi and Bi_4O_6 calculated during the TS of thermal decomposition of $Bi_2O_3(cd)$ in inert atmosphere agree satisfactorily with experimental data [11] (Table 5).

 Table 5 Comparison of calculated partial components pressures over Bi₂O₃ with experimental data [11] (in MPa)

<i>T/V –</i>	$P(O_2)$		P(Bi)		$P(Bi_4O)$	
<i>T</i> /K	calc.	[11]	calc.	[11]	calc.	[11]
900	$4.27 \cdot 10^{-9}$	$4.59 \cdot 10^{-10}$	$1.47 \cdot 10^{-11}$	$6.10 \cdot 10^{-10}$	$8.10 \cdot 10^{-11}$	$8.97 \cdot 10^{-11}$
1000	$8.71 \cdot 10^{-9}$	$1.55 \cdot 10^{-8}$	$5.71 \cdot 10^{-9}$	$2.04 \cdot 10^{-8}$	$5.20 \cdot 10^{-9}$	$5.26 \cdot 10^{-9}$

This work is probably the first investigation of the thermal stability of bismuth oxides over a wide temperature interval and under different gas atmospheres. Therefore we cannot compare the results with known data. According to the review in [11] only the partial pressures of some components over $Bi_2O_3(cd)$ were measured at about 900 to 1200 K. However, the results of our study are only a first numerical estimation, as according to [11] in the gas phase over condensed Bi_2O_3 together with Bi+ Bi_4 , BiO and Bi_4O_6 (their thermodynamic functions taken into account at the TS) also volatile $(BiO)_n$, where n=2÷4, Bi_2O_3 , Bi_4O_5 , Bi_3O_2 and Bi_3O can exist. For these substances the thermodynamic functions have not yet been determined.

The majority of these data are new. In our opinion, the most interesting of them is the possibility of formation and coexistence of bismuth oxides with different degrees of oxidation at the same temperature. This observation we interpreted as the mixtures of phases, but we can also interpret it as the formation and existence of phases of changing composition, i.e. solid (or liquid) solutions in which molten and crystalline oxide phases can coexist. But these problems can be solved in special investigations, where we must find (or determine) all temperature boundaries 'solidus–liquidus' and use definite solution models.

Conclusions

With the help of various calculation methods, the unknown TP and TDRGE of Bi_2O_5 and BiO_2 have been determined. The thermal decompositions of BiO, Bi_2O_3 , Bi_2O_5 and BiO_2 have been studied from 300 to 1500 K in initial O_2 and Ar atmospheres. The compositions of the condensed phases and the consequences and characteristics of some phase transformations were determined.

The results of this investigation agree with known information, about Bi_2O_3 behaviour at equilibrium heating. It was found that in the Bi-O(Ar) systems can coexist not only individual oxides, but also bismuth oxides, with different degrees of oxidation.

* :

This work was carried out with the financial support of the Russian Fund of Fundamental Investigations (project 99-03-32707).

References

- 1 Short Chemical Encyclopedia, Ed. I. L. Knunianz, Soviet Encyclopedia, Moscow 1961, Vol. 1. p. 592. (in Russian).
- 2 I. A. Toropov, V. P. Barzakovski, I. A. Bondar and Iu. P. Udalov, Diagrams of Silicate Systems, Leningrad Science 1970, Vol. 2. p. 372. (in Russian).
- 3 P. Riman and I. Chetiani, Inorganic Chemistry, Moscow Peace, Vol. 1, p. 560. (in Russian).
- 4 Physical and Chemical Properties of Oxides, Ed. G. V. Samsonov, Moscow Metallurgy 1978, p. 472. (in Russian).
- 5 N. A. Vatolin, G. K. Moiseev and B. G. Trusov, Thermodynamic Modeling in High Temperature Inorganic Systems, Moscow Metallurgy 1994, p. 353. (in Russian).
- 6 A. A. Fotiev, V. V. Slobodin and V. A. Fotiev, Chemistry and Technology of High-Temperature Superconductors, Ekaterinburg, Publ. Ural's Division of the Russian Academy of Sciences, 1994, p. 491. (in Russian).
- 7 Extended Abstract of 5th International Symposium on 'Systems with Fast Ionic Transport', Ed.
 W. Jakubowsky. Institute of Physics, Warsaw University of Technology Warszawa, April 22–25, 1998, p. 15.
- 8 Phase Diagrams of Refractory Oxide Systems. Reference book, Ed. R. G. Grebenshikov, S. Peterburg Science, 1997, p. 336. (in Russian).
- 9 V. P. Zereb, Physico-Chemical Investigations of Metastable Equilibriums into the Systems Bi₂O₃-EO₂, where E–Si, Ge, Ti; Thesis of Doctor's dissertation, Moscow Institute of Common and Inorganic Chemistry, 1980 (in Russian).
- 10 V. M. Skorikov and Iu. F. Kargin, Chemistry of Bismuth Oxides Compounds, In book 'Investigations on Inorganic Chemistry and Chemical Technology', Ed. V. B. Lasarev, Moscow Science, 1988, p. 261. (in Russian).
- 11 E. K. Kasenas and Iu. V. Zvetkov, Evaporation of Oxides, Moscow Science, 1997, p. 543. (in Russian).
- 12 G. K. Moiseev, N. A. Vatolin, L. A. Marshuk and N. I. Ilynych, Temperature Dependencies of Reduced Gibbs Energy of Some Inorganic Substances (Alternative Data Base ASTRA.OWN), Ekaterinburg, Publ. Ural's Division of the Russian Academy of Sciences, 1997, p. 230. (in Russian).
- 13 L. A. Reznitski, J. Phys. Chem., 64 (1990) 1669 (in Russian).
- 14 G. B. Sinjarev, N. A. Vatolin, B. G.Trusov and G. K. Moiseev, Use of Computers for Thermodynamic Calculation of Metallurgical Processes, Moscow Science, 1982, p. 263. (in Russian).
- 15 G. K. Moiseev and B. G. Trusov, Thermodynamic Modelling in High Temperature Inorganic Systems. Methodology, Sverdlovsk Publ. Ural State University, Part 1 and 2, 1989, p. 67. (in Russian).

J. Therm. Anal. Cal., 61, 2000

MOISEEV et al.: Bi-O SYSTEM

- 16 N. A. Vatolin and G. K. Moiseev, Deponirovano VINITI. N 4434–76, 1976, p. 12. (in Russian).
- 17 P. Venner, Thermochemical Calculation, Moscow Publ. Foreign Literature, 1950, p. 350. (in Russian).
- 18 L. P. Rusinov and B. S. Gulanitsk, Equilibrium Transformations of Metallurgical Reactions Moscow Metallurgy, 1975, p. 350. (in Russian).
- 19 D. I. Bagdavadze, D. Sh. Tzagareishvili, R. A. Tzhadaia and G. G. Gvelesiani, Comm. Academy of Science of Georg. SSR., 14 (1988) 199. (in Russian).
- 20 H. Yokokawa, Spec. Issue, J. Nat. Chem. Lab. Jp., 83 (1988) 27.
- 21 T. D. Abashidze and D. Sh. Tzagareishvili, Reports of Academy of Sciences Georg. SSR., 8 (1982) 39 (in Russian).
- 22 G. K. Moiseev and N. A. Vatolin, Reports of the Russian Academy of Sciences, 358 (1988) 62.
- 23 G. K. Moiseev and N. A. Vatolin, Reports of the Russian Academy of Sciences, 367 (1999) 208 (in Russian).